Chapter 10

The Mole

Mole

- Means an amount....
- If we talk about eggs...
- If we talk about shoes...
- If we talk about cards...
- Avogadro's number $=6.02 \times 10^{23}$

Terms

- Atomic Mass - the mass of an atom based on the mass of Carbon-12 (expressed in amu)
- Mole $=6.02 \times 10^{23}$ particles.
- Atoms/molecules and moles - when you talk about a mole of particles, the particles are usually atoms or molecules.

Molecules and Formula units

- Molecules are held together by covalent bonds.
- Molecular mass - mass in amu of one molecule
- Formula units are held together by ionic bonds.
- Formula Mass - the mass of one formula unit.

More terms...

- Molar Mass - Mass of 1 mole of a substance in grams.
* ALL MASSES are determined using the periodic table
* For Molecular and Formula masses add all elements in the compound and use the unit AMU
* For Molar mass add all elements in the compound and use the unit g

Converting from g to moles to particles (and back the other way too)

- Unit converters
- 1 mole $=6.02 \times 10^{23}$ particles
- 1 mole = \# of grams (from PT)
- Set up unit converter as a fraction so that units cancel and you are left with new unit on the top

Conversion Examples

- What is the mass of 0.89 mol of CaCl_{2} ?
$0.89 \mathrm{~mol} \mathrm{CaCl}_{2} \times \frac{111.1 \mathrm{~g} \mathrm{CaCl}_{2}}{1 \mathrm{~mol}}=99 \mathrm{~g} \mathrm{CaCl}_{2}$
- A bottle of PbSO_{4} contains 158.1 g . How many moles of PbSO_{4} are there?
$158.1 \mathrm{~g} \mathrm{PbSO}_{4} \times \frac{1 \mathrm{~mol}_{3}}{303.3 \mathrm{~g} \mathrm{PbSO}_{4}}=0.52 \mathrm{~mol} \mathrm{PbSO}_{4}$

More examples...

- Determine the number of atoms that are in 0.58 mol of Se .
$0.58 \mathrm{~mol} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=3.49 \times 10^{23}$ atoms
- How many moles of barium nitrate $\left(\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right.$ contain 6.80×10^{24} formula units?
6.80×10^{24} formula units $\times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23}}=\frac{11.3 \mathrm{~mol}}{\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}$

More Conversions...

- If you have 27.4 g of gold how many atoms do you have?
$27.4 \mathrm{~g} \mathrm{Aux} \quad 1 \mathrm{~mol} \times \underline{6.02 \times 10^{23}}=8.4 \times 10^{24}$ atoms 197.0 g Au 1 mol

More Converting... Moles to L

 (and back)- Unit converter (a new one)
- 1 mole = 22.4 L at STP (standard conditions)
- Ex. How many L would 1.6 moles of N_{2} gas occupy at STP?

$$
1.6 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=35.8 \mathrm{~L} \mathrm{~N}_{2}
$$

- How many grams would 13.5 L of CO_{2} gas be equal to?

$$
13.5 \mathrm{~L} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{44.0 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=26.5 \mathrm{~g} \mathrm{CO}_{2}
$$

Percent Composition

- Also called MASS percent
- Compares grams of each individual element in a compound to the total mass of the compound
- Can be used to distinguish between two compounds that have the same elements in them...ex. CO and CO_{2}
- $\%=(\mathrm{g} \text { element/total grams of compound) })^{*} 100$

Examples from Rolaids WS

1 a. Calcium carbonate is CaCO_{3} Magnesium hydroxide is $\mathrm{Mg}(\mathrm{OH})_{2}$
$1 \mathrm{~b} . \mathrm{CaCO}_{3}=100.1 \mathrm{~g}$

$$
\mathrm{Mg}(\mathrm{OH})_{2}=58.3 \mathrm{~g}
$$

$1 \mathrm{c} . \% \mathrm{C}$ in $\mathrm{CaCO}_{3} \quad \mathrm{C}=12.0 \mathrm{~g}$ so \% C = (12.0 g / 100.1 g) $100=12.0 \%$ C
1 d . Try that yourself...
Did you get 54.9\%?

Empirical Formula

- Chemical formula that gives the simplest whole-number ratio of atoms in moles
- Ex. WS 10-3 \#12
- Convert all g or \% to moles
- $1.723 \mathrm{~g} \mathrm{C} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=0.144 \mathrm{~mol} \mathrm{C}$
- $0.289 \mathrm{~g} \mathrm{Hx} \frac{1 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~g} \mathrm{H}}=0.29 \mathrm{~mol} \mathrm{H}$
- $0.459 \mathrm{~g} \mathrm{Ox} \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=0.0287 \mathrm{~mol} \mathrm{O}$

Ex. continued...

- Divide each mol amount by the lowest of them
- $0.144 \mathrm{~mol} \mathrm{C}=5.02 \mathrm{~mol} \mathrm{C}$ 0.0287
- $0.29 \mathrm{~mol} \mathrm{H}=10.0 \mathrm{~mol} \mathrm{H}$ 0.0287
- $\underline{0.0287 \mathrm{~mol} \mathrm{O}}=1 \mathrm{~mol} \mathrm{O}$ 0.0287
- Round these values to whole numbers (but not by more than 0.1) or multiply by 2 to get them to be whole numbers

Ex. Continued...

- Use the whole numbers as subscripts for the final formula
- $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$
- Try \# 18 on the same worksheet
- $2.16 \mathrm{~g} \mathrm{Al} \times \underline{1 \mathrm{~mol}}=\underline{0.0800 \mathrm{~mol} \mathrm{Al}}=1 \times 2=2$ $27.0 \mathrm{~g} \quad 0.0800$
- $3.85 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol}}{32.1 \mathrm{~g}}=\frac{0.120 \mathrm{~mol} \mathrm{~S}}{0.0800}=1.5 \times 2=3 \quad \mathrm{Al}_{2} \mathrm{~S}_{3} \mathrm{O}_{12}$
- $7.68 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol}}{16.0 \mathrm{~g}}=\frac{0.480 \mathrm{~mol} \mathrm{O}}{0.0800}=6 \times 2=12 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Molecular Formula

- Molecular Formula - chemical formula that gives the actual number of atoms in moles of each element in a molecule of a compound
- Always a whole number multiple of the simplest ratio (Empirical formula)
- Whole number multiple will be the whole number relationship between the mass of the empirical formula and

Ex. WS 10-3 \# 20

- Calculate the empirical formula first
- $42.56 \mathrm{~g} \mathrm{Pd} \times 1 \mathrm{~mol} \mathrm{Pd}=0.4000 \mathrm{~mol}$ Pd 106.4 g Pd
- $0.80 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.0 \mathrm{~g} \mathrm{H}}=0.80 \mathrm{~mol} \mathrm{H}$
- $0.4000 \mathrm{~mol} \mathrm{Pd}=1 \mathrm{~mol}$ Pd $0.80 \mathrm{~mol} \mathrm{H}=2 \mathrm{~mol} \mathrm{H}$ $0.80 \quad 0.80$
- PdH_{2}

Ex. Continued...

- Calculate the molar mass of the empirical formula
- $\mathrm{PdH}_{2}=106.4+(2 * 1.0)=108.4 \mathrm{~g}$
- Divide molar mass of molecular formula (given in the problem) by molar mass of empirical formula
- $216.8 \mathrm{~g} / 108.4 \mathrm{~g}=2$
- Multiply subscripts in the empirical formula ALL by this whole number
- $\mathrm{Pd}_{2} \mathrm{H}_{4}$

